On Noncommutative Involutive Divisions

نویسنده

  • G. A. Evans
چکیده

Buchberger’s algorithm for computing a Gröbner basis solves the ideal membership problem over commutative polynomial rings. In the early 1990’s, an alternative to this algorithm was found, namely the involutive basis algorithm, which provides a Gröbner basis with extra combinatorial properties. Buchberger’s work was generalised to noncommutative polynomial rings by Bergman and Mora during the 1970’s and 1980’s. This article provides the corresponding generalisation for involutive bases, providing a noncommutative involutive basis algorithm, and analysing several noncommutative involutive divisions for use with the algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative involutive bases

Gröbner Basis theory originated in the work of Buchberger [4] and is now considered to be one of the most important and useful areas of computer algebra. In 1993, Zharkov and Blinkov [13] proposed an alternative method of computing a commutative Gröbner Basis, namely the computation of an Involutive Basis. In the mid 1980’s, Mora showed [11] that Buchberger’s work could be generalised for nonco...

متن کامل

Involutive Directions and New Involutive Divisions

In this paper, we propose the concept of involutive direction ss a vector representation for the concept of involutive division proposed by Gerdt and hi co-workers. With this representation, most of the properties of involutive divisions such as Noetherity, Artinity, and constructivity, can be greatly simplified. A new algorithm to compute the involutive completion is also given. Based on the v...

متن کامل

Involutive Division Technique: Some Generalizations and Optimizations

In this paper, in addition to the earlier introduced involutive divisions, we consider a new class of divisions induced by admissible monomial orderings. We prove that these divisions are noetherian and constructive. Thereby each of them allows one to compute an involutive Gröbner basis of a polynomial ideal by sequentially examining multiplicative reductions of nonmultiplicative prolongations....

متن کامل

Complete involutive rewriting systems

Given a monoid string rewriting system M , one way of obtaining a complete rewriting system for M is to use the classical Knuth-Bendix critical pairs completion algorithm. It is well known that this algorithm is equivalent to computing a noncommutative Gröbner basis for M . This article develops an alternative approach, using noncommutative involutive basis methods to obtain a complete involuti...

متن کامل

Involutive Divisions in Mathematica: Implementation and Some Applications

In this paper we consider diierent involutive divisions and describe their implementation in Mathematica together with algorithms for the construction of involutive bases for monomial ideals. As a straightforward application, we consider computation of the Hilbert function and the Hilbert polynomial for a monomial ideal, or for a polynomial one represented by its Grr obner basis. This allows on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006